- Accepts +/- 0.010" Axial Shaft Play
- 32 to 1,250 Cycles Per Revolution (CPR)
- Tracks 0 to 300,000 Cycles Per Second
- Powered From a Single +5VDC Power Supply
- 2-Channel Quadrature Differential Squarewave Outputs
- Operating Temperature of -40° to $+100^{\circ} \mathrm{C}$
- RoHS Compliant and REACH Certified

ENC-A5DN is a differential encoder designed for quick and simple assembly to any shaft with a minimum length of .445 " and maximum length of .570 ", and accepts shaft sizes ranging from .079 " to .394 " in diameter. The ENC-A5DN module is designed to detect the rotary position with a code wheel. When attached to the end of a shaft, the encoder provides digital feedback information. This differential encoder consists of a LED source lens and a monolithic detector IC enclosed in a small polymer package. These modules implement phase array detector technology providing superior performance and tolerances over traditional aperture mask type encoders. The ENC-A5DN series provides digital quadrature differential outputs on all resolutions and are capable of sinking or sourcing 8 mA each. These encoders are powered from a single +5 VDC power supply and are RoHS compliant and REACH certified.

 3 = Base Mounting Holes Become 0.125"
 A = Adds Self-Aligning Shoulder to Base
 G = Adds 1.812" Mounting Ears to Base
 R = Adds 3-Slot Adapter to Bottom of Base Blank = Default

L010728

DEFAULT OPTION:

$\phi .113$ 2 PLCS

Note: Dimensions are in inches

E-Option:

H-Option:

Note: Dimensions are in inches

Cover Options:	Description
E-Option	E-Option provides a cylindrical extension cover for larger shafts. The required shaft length is .445 " to .750 ". Note: E-option + R-Option the required shaft length is .570 " to .875".
H- Option	Shafts 2 mm to $1 / 4^{\prime \prime}$, a .295 " diameter hole is supplied. Shafts $5 / 16^{\prime \prime}$ to 10 mm , a $.438^{\prime \prime}$ diameter hole is supplied. Required shaft length $>0.445^{\prime \prime}$ Note: H-Option + R-Option the required shaft length is > .570"
Default Option	The required length is .445 " to $.570^{\prime \prime}$ Note: Default Option + R-Option the required shaft length is . $570^{\prime \prime}$ to $.695^{\prime \prime}$

3-OPTION:

3-Option: Makes all five hole diameters . $125^{\prime \prime}$

G-OPTION:

G-Option: Includes molded ears which enables it to be mounted to a $1.812^{\prime \prime}$ diameter bolt circle. Mounting holes are designed to fit $4-40$ screws. Will work with shaft lengths of $.445^{\prime \prime}$ to $.570^{\prime \prime}$ and does not add to the required shaft length.

A-Option: Adds a .497" diameter alignment shoulder designed to slip into a . 500" diameter recess in the mounting surface centered around the shaft.

R-Option: Adapter is an $1 / 8^{\prime \prime}$ thick fiberglass adapter which is pre-mounted to the base of the encoder. It allows the encoder to rotate +/- 15 degrees.
"This option adds $1 / 8$ " to the required shaft length.

Note: All dimensions are in inches
(Note: Base Mounting Screws are NOT included. \#2-56 or \#4-40 screws can be used to mount the base to your mounting surface.)

Differential Encoder Timing Diagram

ROTATION:
CW - B LEADS A, CCW - A LEADS B

DIFFERENTIAL ENCODER PINOUT TOP OF ENCODER FACING PLUG

Model \#	Description
CPR(N):	The Number of Cycles Per Revolution
One Shaft Rotation:	360 mechanical degrees, N cycles
One Electrical Degree (${ }^{\circ} \mathrm{e}$):	1/360th of one cycle
One Cycle (C):	360 electrical degrees (${ }^{\circ}$ e). Each cycle can be decoded into 1 or 4 codes, referred to as X1 or X4 resolution multiplication
Symmetry:	A measure of the relationship between (X) and (Y) in electrical degrees, nominally 180 ${ }^{\circ} \mathrm{e}$
Quadrature (Z):	The phase lag or lead between channels A and B in electrical degrees, nominally $90^{\circ} \mathrm{e}$
Index (CH I):	The Index Output goes high once per revolution, coincident with the low states of channels A and B, nominally $1 / 4$ of one cycle ($90^{\circ} \mathrm{e}$)

Timing Characteristics	Symbol	Min	Typ	Max	Units
Cycle Error	C	-	3.0	5.5	${ }^{\circ} \mathrm{e}$
Symmetry	X, Y	150	180	210	${ }^{\circ} \mathrm{e}$
Quadrature	Z	60	90	120	${ }^{\circ} \mathrm{e}$
Index Pulse Width	Po	60	90	120	${ }^{\circ} \mathrm{e}$
Ch. I Rise After Ch. B or Ch. A Fall	t 1	10	100	250	ns
Ch. I Fall After Ch. B or Ch. A Rise	t 2	70	150	300	ns

Parameter	Max	Units
Vibration (5 to 2kHz)	20	g
Shaft Axial Play	$+/-0.01$	in.
Shaft Eccentricity Plus Radial Play	0.004	in.
Acceleration	250,000	$\mathrm{rad} / \mathrm{sec}^{2}$

Cables:

The following cables are compatible with Anaheim Automation's A5DN series encoder. Select a cable length from the table below:

Cable Part Number	Length
ENC-CBL-AA4707	$1 \mathrm{ft}$.
ENC-CBL-AA4707-5	5 ft.
ENC-CBL-AA4707-10	10 ft.
ENC-CBL-AA4707-20	20 ft.

NOTE: For pricing and other information on cables and centering tools, please visit Accessories on our website.

Parameter	Min	Typ	Max	Units
Supply Voltage	4.5	5.0	5.5	Volts
Supply Current CPR < 500, no load CPR ≥ 500 and <2000, no load CPR ≥ 2000		$\begin{aligned} & 29 \\ & 57 \\ & 73 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \\ & 88 \end{aligned}$	mA
Output Low ($\mathrm{I}_{\text {LL }}=8 \mathrm{~mA}$ max)	-	0.2	0.4	Volts
Output High* $\mathrm{I}_{\mathrm{OL}}=-8 \mathrm{~mA} \max$ Differential Output Rise/ Fall Time	2.4	3.4	15	Volts nS

Recommended Operating Conditions	Min	Max
Units		
Temperature (CPR <2000)	-40	100
${ }^{\circ} \mathrm{C}$		
Temperature (CPR $\geq 2000)$	-25	100
${ }^{\circ} \mathrm{C}$		
Load Capacitance	-	100
Count Frequency (CPR $\leq 1250)$	-	300
Count Frequency (CPR 2000-2500)	-	360
Count Frequency (CPR $4000+$)	-	720

Speed Calculation		Units
CPR <2000	$18 \times 10^{6} /$ CPR	RPM
CPR ≥ 2000 and <4000	$21.6 \times 10^{6} /$ CPR	RPM
CPR ≥ 4000	$43.2 \times 10^{6} /$ CPR	RPM

*60,000 RPM is the maximum RPM due to mechanical limitations.

Centering Tools:

Centering tools are optional, but recommended for a more precise installation.

